3.386 \(\int \frac{\sec ^2(c+d x) (B \sec (c+d x)+C \sec ^2(c+d x))}{\sqrt{a+a \sec (c+d x)}} \, dx\)

Optimal. Leaf size=159 \[ \frac{\sqrt{2} (B-C) \tan ^{-1}\left (\frac{\sqrt{a} \tan (c+d x)}{\sqrt{2} \sqrt{a \sec (c+d x)+a}}\right )}{\sqrt{a} d}+\frac{2 (5 B-C) \tan (c+d x) \sqrt{a \sec (c+d x)+a}}{15 a d}-\frac{4 (5 B-7 C) \tan (c+d x)}{15 d \sqrt{a \sec (c+d x)+a}}+\frac{2 C \tan (c+d x) \sec ^2(c+d x)}{5 d \sqrt{a \sec (c+d x)+a}} \]

[Out]

(Sqrt[2]*(B - C)*ArcTan[(Sqrt[a]*Tan[c + d*x])/(Sqrt[2]*Sqrt[a + a*Sec[c + d*x]])])/(Sqrt[a]*d) - (4*(5*B - 7*
C)*Tan[c + d*x])/(15*d*Sqrt[a + a*Sec[c + d*x]]) + (2*C*Sec[c + d*x]^2*Tan[c + d*x])/(5*d*Sqrt[a + a*Sec[c + d
*x]]) + (2*(5*B - C)*Sqrt[a + a*Sec[c + d*x]]*Tan[c + d*x])/(15*a*d)

________________________________________________________________________________________

Rubi [A]  time = 0.514366, antiderivative size = 159, normalized size of antiderivative = 1., number of steps used = 6, number of rules used = 6, integrand size = 42, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.143, Rules used = {4072, 4021, 4010, 4001, 3795, 203} \[ \frac{\sqrt{2} (B-C) \tan ^{-1}\left (\frac{\sqrt{a} \tan (c+d x)}{\sqrt{2} \sqrt{a \sec (c+d x)+a}}\right )}{\sqrt{a} d}+\frac{2 (5 B-C) \tan (c+d x) \sqrt{a \sec (c+d x)+a}}{15 a d}-\frac{4 (5 B-7 C) \tan (c+d x)}{15 d \sqrt{a \sec (c+d x)+a}}+\frac{2 C \tan (c+d x) \sec ^2(c+d x)}{5 d \sqrt{a \sec (c+d x)+a}} \]

Antiderivative was successfully verified.

[In]

Int[(Sec[c + d*x]^2*(B*Sec[c + d*x] + C*Sec[c + d*x]^2))/Sqrt[a + a*Sec[c + d*x]],x]

[Out]

(Sqrt[2]*(B - C)*ArcTan[(Sqrt[a]*Tan[c + d*x])/(Sqrt[2]*Sqrt[a + a*Sec[c + d*x]])])/(Sqrt[a]*d) - (4*(5*B - 7*
C)*Tan[c + d*x])/(15*d*Sqrt[a + a*Sec[c + d*x]]) + (2*C*Sec[c + d*x]^2*Tan[c + d*x])/(5*d*Sqrt[a + a*Sec[c + d
*x]]) + (2*(5*B - C)*Sqrt[a + a*Sec[c + d*x]]*Tan[c + d*x])/(15*a*d)

Rule 4072

Int[((a_.) + csc[(e_.) + (f_.)*(x_)]*(b_.))^(m_.)*((A_.) + csc[(e_.) + (f_.)*(x_)]*(B_.) + csc[(e_.) + (f_.)*(
x_)]^2*(C_.))*((c_.) + csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_.), x_Symbol] :> Dist[1/b^2, Int[(a + b*Csc[e + f*x])
^(m + 1)*(c + d*Csc[e + f*x])^n*(b*B - a*C + b*C*Csc[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C, m,
 n}, x] && EqQ[A*b^2 - a*b*B + a^2*C, 0]

Rule 4021

Int[(csc[(e_.) + (f_.)*(x_)]*(d_.))^(n_)*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*
(B_.) + (A_)), x_Symbol] :> -Simp[(B*d*Cot[e + f*x]*(a + b*Csc[e + f*x])^m*(d*Csc[e + f*x])^(n - 1))/(f*(m + n
)), x] + Dist[d/(b*(m + n)), Int[(a + b*Csc[e + f*x])^m*(d*Csc[e + f*x])^(n - 1)*Simp[b*B*(n - 1) + (A*b*(m +
n) + a*B*m)*Csc[e + f*x], x], x], x] /; FreeQ[{a, b, d, e, f, A, B, m}, x] && NeQ[A*b - a*B, 0] && EqQ[a^2 - b
^2, 0] && GtQ[n, 1]

Rule 4010

Int[csc[(e_.) + (f_.)*(x_)]^2*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_
)), x_Symbol] :> -Simp[(B*Cot[e + f*x]*(a + b*Csc[e + f*x])^(m + 1))/(b*f*(m + 2)), x] + Dist[1/(b*(m + 2)), I
nt[Csc[e + f*x]*(a + b*Csc[e + f*x])^m*Simp[b*B*(m + 1) + (A*b*(m + 2) - a*B)*Csc[e + f*x], x], x], x] /; Free
Q[{a, b, e, f, A, B, m}, x] && NeQ[A*b - a*B, 0] &&  !LtQ[m, -1]

Rule 4001

Int[csc[(e_.) + (f_.)*(x_)]*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_)*(csc[(e_.) + (f_.)*(x_)]*(B_.) + (A_))
, x_Symbol] :> -Simp[(B*Cot[e + f*x]*(a + b*Csc[e + f*x])^m)/(f*(m + 1)), x] + Dist[(a*B*m + A*b*(m + 1))/(b*(
m + 1)), Int[Csc[e + f*x]*(a + b*Csc[e + f*x])^m, x], x] /; FreeQ[{a, b, A, B, e, f, m}, x] && NeQ[A*b - a*B,
0] && EqQ[a^2 - b^2, 0] && NeQ[a*B*m + A*b*(m + 1), 0] &&  !LtQ[m, -2^(-1)]

Rule 3795

Int[csc[(e_.) + (f_.)*(x_)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[-2/f, Subst[Int[1/(2
*a + x^2), x], x, (b*Cot[e + f*x])/Sqrt[a + b*Csc[e + f*x]]], x] /; FreeQ[{a, b, e, f}, x] && EqQ[a^2 - b^2, 0
]

Rule 203

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTan[(Rt[b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[b, 2]), x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{\sec ^2(c+d x) \left (B \sec (c+d x)+C \sec ^2(c+d x)\right )}{\sqrt{a+a \sec (c+d x)}} \, dx &=\int \frac{\sec ^3(c+d x) (B+C \sec (c+d x))}{\sqrt{a+a \sec (c+d x)}} \, dx\\ &=\frac{2 C \sec ^2(c+d x) \tan (c+d x)}{5 d \sqrt{a+a \sec (c+d x)}}+\frac{2 \int \frac{\sec ^2(c+d x) \left (2 a C+\frac{1}{2} a (5 B-C) \sec (c+d x)\right )}{\sqrt{a+a \sec (c+d x)}} \, dx}{5 a}\\ &=\frac{2 C \sec ^2(c+d x) \tan (c+d x)}{5 d \sqrt{a+a \sec (c+d x)}}+\frac{2 (5 B-C) \sqrt{a+a \sec (c+d x)} \tan (c+d x)}{15 a d}+\frac{4 \int \frac{\sec (c+d x) \left (\frac{1}{4} a^2 (5 B-C)-\frac{1}{2} a^2 (5 B-7 C) \sec (c+d x)\right )}{\sqrt{a+a \sec (c+d x)}} \, dx}{15 a^2}\\ &=-\frac{4 (5 B-7 C) \tan (c+d x)}{15 d \sqrt{a+a \sec (c+d x)}}+\frac{2 C \sec ^2(c+d x) \tan (c+d x)}{5 d \sqrt{a+a \sec (c+d x)}}+\frac{2 (5 B-C) \sqrt{a+a \sec (c+d x)} \tan (c+d x)}{15 a d}+(B-C) \int \frac{\sec (c+d x)}{\sqrt{a+a \sec (c+d x)}} \, dx\\ &=-\frac{4 (5 B-7 C) \tan (c+d x)}{15 d \sqrt{a+a \sec (c+d x)}}+\frac{2 C \sec ^2(c+d x) \tan (c+d x)}{5 d \sqrt{a+a \sec (c+d x)}}+\frac{2 (5 B-C) \sqrt{a+a \sec (c+d x)} \tan (c+d x)}{15 a d}-\frac{(2 (B-C)) \operatorname{Subst}\left (\int \frac{1}{2 a+x^2} \, dx,x,-\frac{a \tan (c+d x)}{\sqrt{a+a \sec (c+d x)}}\right )}{d}\\ &=\frac{\sqrt{2} (B-C) \tan ^{-1}\left (\frac{\sqrt{a} \tan (c+d x)}{\sqrt{2} \sqrt{a+a \sec (c+d x)}}\right )}{\sqrt{a} d}-\frac{4 (5 B-7 C) \tan (c+d x)}{15 d \sqrt{a+a \sec (c+d x)}}+\frac{2 C \sec ^2(c+d x) \tan (c+d x)}{5 d \sqrt{a+a \sec (c+d x)}}+\frac{2 (5 B-C) \sqrt{a+a \sec (c+d x)} \tan (c+d x)}{15 a d}\\ \end{align*}

Mathematica [A]  time = 0.376557, size = 123, normalized size = 0.77 \[ \frac{\tan (c+d x) \left (2 \sqrt{1-\sec (c+d x)} \left ((5 B-C) \sec (c+d x)-5 B+3 C \sec ^2(c+d x)+13 C\right )+15 \sqrt{2} (B-C) \tanh ^{-1}\left (\frac{\sqrt{1-\sec (c+d x)}}{\sqrt{2}}\right )\right )}{15 d \sqrt{1-\sec (c+d x)} \sqrt{a (\sec (c+d x)+1)}} \]

Antiderivative was successfully verified.

[In]

Integrate[(Sec[c + d*x]^2*(B*Sec[c + d*x] + C*Sec[c + d*x]^2))/Sqrt[a + a*Sec[c + d*x]],x]

[Out]

((15*Sqrt[2]*(B - C)*ArcTanh[Sqrt[1 - Sec[c + d*x]]/Sqrt[2]] + 2*Sqrt[1 - Sec[c + d*x]]*(-5*B + 13*C + (5*B -
C)*Sec[c + d*x] + 3*C*Sec[c + d*x]^2))*Tan[c + d*x])/(15*d*Sqrt[1 - Sec[c + d*x]]*Sqrt[a*(1 + Sec[c + d*x])])

________________________________________________________________________________________

Maple [B]  time = 0.332, size = 595, normalized size = 3.7 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sec(d*x+c)^2*(B*sec(d*x+c)+C*sec(d*x+c)^2)/(a+a*sec(d*x+c))^(1/2),x)

[Out]

1/60/d/a*(15*B*cos(d*x+c)^2*ln(((-2*cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*sin(d*x+c)-cos(d*x+c)+1)/sin(d*x+c))*(-2*
cos(d*x+c)/(cos(d*x+c)+1))^(5/2)*sin(d*x+c)-15*C*cos(d*x+c)^2*ln(((-2*cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*sin(d*x
+c)-cos(d*x+c)+1)/sin(d*x+c))*(-2*cos(d*x+c)/(cos(d*x+c)+1))^(5/2)*sin(d*x+c)+30*B*cos(d*x+c)*ln(((-2*cos(d*x+
c)/(cos(d*x+c)+1))^(1/2)*sin(d*x+c)-cos(d*x+c)+1)/sin(d*x+c))*(-2*cos(d*x+c)/(cos(d*x+c)+1))^(5/2)*sin(d*x+c)-
30*C*cos(d*x+c)*ln(((-2*cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*sin(d*x+c)-cos(d*x+c)+1)/sin(d*x+c))*(-2*cos(d*x+c)/(
cos(d*x+c)+1))^(5/2)*sin(d*x+c)+15*B*ln(((-2*cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*sin(d*x+c)-cos(d*x+c)+1)/sin(d*x
+c))*(-2*cos(d*x+c)/(cos(d*x+c)+1))^(5/2)*sin(d*x+c)-15*C*ln(((-2*cos(d*x+c)/(cos(d*x+c)+1))^(1/2)*sin(d*x+c)-
cos(d*x+c)+1)/sin(d*x+c))*(-2*cos(d*x+c)/(cos(d*x+c)+1))^(5/2)*sin(d*x+c)+40*B*cos(d*x+c)^3-104*C*cos(d*x+c)^3
-80*B*cos(d*x+c)^2+112*C*cos(d*x+c)^2+40*B*cos(d*x+c)-32*C*cos(d*x+c)+24*C)*(a*(cos(d*x+c)+1)/cos(d*x+c))^(1/2
)/cos(d*x+c)^2/sin(d*x+c)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (C \sec \left (d x + c\right )^{2} + B \sec \left (d x + c\right )\right )} \sec \left (d x + c\right )^{2}}{\sqrt{a \sec \left (d x + c\right ) + a}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^2*(B*sec(d*x+c)+C*sec(d*x+c)^2)/(a+a*sec(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

integrate((C*sec(d*x + c)^2 + B*sec(d*x + c))*sec(d*x + c)^2/sqrt(a*sec(d*x + c) + a), x)

________________________________________________________________________________________

Fricas [A]  time = 0.652144, size = 1019, normalized size = 6.41 \begin{align*} \left [-\frac{15 \, \sqrt{2}{\left ({\left (B - C\right )} a \cos \left (d x + c\right )^{3} +{\left (B - C\right )} a \cos \left (d x + c\right )^{2}\right )} \sqrt{-\frac{1}{a}} \log \left (\frac{2 \, \sqrt{2} \sqrt{\frac{a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sqrt{-\frac{1}{a}} \cos \left (d x + c\right ) \sin \left (d x + c\right ) + 3 \, \cos \left (d x + c\right )^{2} + 2 \, \cos \left (d x + c\right ) - 1}{\cos \left (d x + c\right )^{2} + 2 \, \cos \left (d x + c\right ) + 1}\right ) + 4 \,{\left ({\left (5 \, B - 13 \, C\right )} \cos \left (d x + c\right )^{2} -{\left (5 \, B - C\right )} \cos \left (d x + c\right ) - 3 \, C\right )} \sqrt{\frac{a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sin \left (d x + c\right )}{30 \,{\left (a d \cos \left (d x + c\right )^{3} + a d \cos \left (d x + c\right )^{2}\right )}}, -\frac{2 \,{\left ({\left (5 \, B - 13 \, C\right )} \cos \left (d x + c\right )^{2} -{\left (5 \, B - C\right )} \cos \left (d x + c\right ) - 3 \, C\right )} \sqrt{\frac{a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \sin \left (d x + c\right ) + \frac{15 \, \sqrt{2}{\left ({\left (B - C\right )} a \cos \left (d x + c\right )^{3} +{\left (B - C\right )} a \cos \left (d x + c\right )^{2}\right )} \arctan \left (\frac{\sqrt{2} \sqrt{\frac{a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \cos \left (d x + c\right )}{\sqrt{a} \sin \left (d x + c\right )}\right )}{\sqrt{a}}}{15 \,{\left (a d \cos \left (d x + c\right )^{3} + a d \cos \left (d x + c\right )^{2}\right )}}\right ] \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^2*(B*sec(d*x+c)+C*sec(d*x+c)^2)/(a+a*sec(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

[-1/30*(15*sqrt(2)*((B - C)*a*cos(d*x + c)^3 + (B - C)*a*cos(d*x + c)^2)*sqrt(-1/a)*log((2*sqrt(2)*sqrt((a*cos
(d*x + c) + a)/cos(d*x + c))*sqrt(-1/a)*cos(d*x + c)*sin(d*x + c) + 3*cos(d*x + c)^2 + 2*cos(d*x + c) - 1)/(co
s(d*x + c)^2 + 2*cos(d*x + c) + 1)) + 4*((5*B - 13*C)*cos(d*x + c)^2 - (5*B - C)*cos(d*x + c) - 3*C)*sqrt((a*c
os(d*x + c) + a)/cos(d*x + c))*sin(d*x + c))/(a*d*cos(d*x + c)^3 + a*d*cos(d*x + c)^2), -1/15*(2*((5*B - 13*C)
*cos(d*x + c)^2 - (5*B - C)*cos(d*x + c) - 3*C)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*sin(d*x + c) + 15*sqrt
(2)*((B - C)*a*cos(d*x + c)^3 + (B - C)*a*cos(d*x + c)^2)*arctan(sqrt(2)*sqrt((a*cos(d*x + c) + a)/cos(d*x + c
))*cos(d*x + c)/(sqrt(a)*sin(d*x + c)))/sqrt(a))/(a*d*cos(d*x + c)^3 + a*d*cos(d*x + c)^2)]

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\left (B + C \sec{\left (c + d x \right )}\right ) \sec ^{3}{\left (c + d x \right )}}{\sqrt{a \left (\sec{\left (c + d x \right )} + 1\right )}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)**2*(B*sec(d*x+c)+C*sec(d*x+c)**2)/(a+a*sec(d*x+c))**(1/2),x)

[Out]

Integral((B + C*sec(c + d*x))*sec(c + d*x)**3/sqrt(a*(sec(c + d*x) + 1)), x)

________________________________________________________________________________________

Giac [A]  time = 8.94, size = 366, normalized size = 2.3 \begin{align*} \frac{\frac{15 \,{\left (\sqrt{2} B - \sqrt{2} C\right )} \log \left ({\left | -\sqrt{-a} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right ) + \sqrt{-a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} + a} \right |}\right )}{\sqrt{-a} \mathrm{sgn}\left (\tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} - 1\right )} - \frac{2 \,{\left ({\left (10 \, \sqrt{2} B a^{2} \mathrm{sgn}\left (\tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} - 1\right ) - 20 \, \sqrt{2} C a^{2} \mathrm{sgn}\left (\tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} - 1\right ) -{\left (10 \, \sqrt{2} B a^{2} \mathrm{sgn}\left (\tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} - 1\right ) - 17 \, \sqrt{2} C a^{2} \mathrm{sgn}\left (\tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} - 1\right )\right )} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2}\right )} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} + \frac{15 \, \sqrt{2} C a^{2}}{\mathrm{sgn}\left (\tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} - 1\right )}\right )} \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )}{{\left (a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} - a\right )}^{2} \sqrt{-a \tan \left (\frac{1}{2} \, d x + \frac{1}{2} \, c\right )^{2} + a}}}{15 \, d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^2*(B*sec(d*x+c)+C*sec(d*x+c)^2)/(a+a*sec(d*x+c))^(1/2),x, algorithm="giac")

[Out]

1/15*(15*(sqrt(2)*B - sqrt(2)*C)*log(abs(-sqrt(-a)*tan(1/2*d*x + 1/2*c) + sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a))
)/(sqrt(-a)*sgn(tan(1/2*d*x + 1/2*c)^2 - 1)) - 2*((10*sqrt(2)*B*a^2*sgn(tan(1/2*d*x + 1/2*c)^2 - 1) - 20*sqrt(
2)*C*a^2*sgn(tan(1/2*d*x + 1/2*c)^2 - 1) - (10*sqrt(2)*B*a^2*sgn(tan(1/2*d*x + 1/2*c)^2 - 1) - 17*sqrt(2)*C*a^
2*sgn(tan(1/2*d*x + 1/2*c)^2 - 1))*tan(1/2*d*x + 1/2*c)^2)*tan(1/2*d*x + 1/2*c)^2 + 15*sqrt(2)*C*a^2/sgn(tan(1
/2*d*x + 1/2*c)^2 - 1))*tan(1/2*d*x + 1/2*c)/((a*tan(1/2*d*x + 1/2*c)^2 - a)^2*sqrt(-a*tan(1/2*d*x + 1/2*c)^2
+ a)))/d